Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 915, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36807572

RESUMO

Cellular cholesterol can be metabolized to its fatty acid esters, cholesteryl esters (CEs), to be stored in lipid droplets (LDs). With triacylglycerols (TGs), CEs represent the main neutral lipids in LDs. However, while TG melts at ~4 °C, CE melts at ~44 °C, raising the question of how CE-rich LDs form in cells. Here, we show that CE forms supercooled droplets when the CE concentration in LDs is above 20% to TG and, in particular, liquid-crystalline phases when the fraction of CEs is above 90% at 37 °C. In model bilayers, CEs condense and nucleate droplets when the CE/phospholipid ratio reaches over 10-15%. This concentration is reduced by TG pre-clusters in the membrane that thereby facilitate CE nucleation. Accordingly, blocking TG synthesis in cells is sufficient to strongly dampen CE LD nucleation. Finally, CE LDs emerged at seipins, which cluster and nucleate TG LDs in the ER. However, when TG synthesis is inhibited, similar numbers of LDs are generated in the presence and absence of seipin, suggesting that seipin controls CE LD formation via its TG clustering capacity. Our data point to a unique model whereby TG pre-clusters, favorable at seipins, catalyze the nucleation of CE LDs.


Assuntos
Ésteres do Colesterol , Gotículas Lipídicas , Ésteres do Colesterol/metabolismo , Triglicerídeos/metabolismo , Gotículas Lipídicas/metabolismo , Colesterol/metabolismo
2.
PLoS Biol ; 19(1): e3000998, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481779

RESUMO

Seipin is a disk-like oligomeric endoplasmic reticulum (ER) protein important for lipid droplet (LD) biogenesis and triacylglycerol (TAG) delivery to growing LDs. Here we show through biomolecular simulations bridged to experiments that seipin can trap TAGs in the ER bilayer via the luminal hydrophobic helices of the protomers delineating the inner opening of the seipin disk. This promotes the nanoscale sequestration of TAGs at a concentration that by itself is insufficient to induce TAG clustering in a lipid membrane. We identify Ser166 in the α3 helix as a favored TAG occupancy site and show that mutating it compromises the ability of seipin complexes to sequester TAG in silico and to promote TAG transfer to LDs in cells. While the S166D-seipin mutant colocalizes poorly with promethin, the association of nascent wild-type seipin complexes with promethin is promoted by TAGs. Together, these results suggest that seipin traps TAGs via its luminal hydrophobic helices, serving as a catalyst for seeding the TAG cluster from dissolved monomers inside the seipin ring, thereby generating a favorable promethin binding interface.


Assuntos
Retículo Endoplasmático/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Membranas Intracelulares/metabolismo , Triglicerídeos/metabolismo , Células Cultivadas , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/genética , Células HEK293 , Humanos , Gotículas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica/fisiologia , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
3.
Chem Phys Lipids ; 227: 104852, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31866438

RESUMO

G protein-coupled receptors (GPCRs) are transmembrane receptors that mediate a large number of cellular responses. The organization of GPCRs into dimers and higher-order oligomers is known to allow a larger repertoire of downstream signaling events. In this context, a crosstalk between the adenosine and dopamine receptors has been reported, indicating the presence of heterodimers that are functionally relevant. In this paper, we explored the effect of membrane cholesterol on the adenosine2A (A2A) and dopamine D3 (D3) receptors using coarse-grain molecular dynamics simulations. We analyzed cholesterol interaction sites on the A2A receptor and were able to reproduce the sites indicated by crystallography and previous atomistic simulations. We predict novel cholesterol interaction sites on the D3 receptor that could be important in the reported cholesterol sensitivity in receptor function. Further, we analyzed the formation of heterodimers between the two receptors. Our results suggest that membrane cholesterol modulates the relative population of several co-existing heterodimer conformations. Both direct receptor-cholesterol interaction and indirect membrane effects contribute toward the modulation of heterodimer conformations. These results constitute one of the first examples of modulation of GPCR hetero-dimerization by membrane cholesterol, and could prove to be useful in designing better therapeutic strategies.


Assuntos
Colesterol/metabolismo , Receptores A2 de Adenosina/metabolismo , Receptores de Dopamina D3/metabolismo , Sítios de Ligação , Colesterol/química , Dimerização , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores A2 de Adenosina/química , Receptores de Dopamina D3/química
4.
Nat Methods ; 16(11): 1193, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31636461

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nat Methods ; 16(9): 866-869, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31451765

RESUMO

Auxin-inducible degron technology allows rapid and controlled protein depletion. However, basal degradation without auxin and inefficient auxin-inducible depletion have limited its utility. We have identified a potent auxin-inducible degron system composed of auxin receptor F-box protein AtAFB2 and short degron miniIAA7. The system showed minimal basal degradation and enabled rapid auxin-inducible depletion of endogenous human transmembrane, cytoplasmic and nuclear proteins in 1 h with robust functional phenotypes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Carcinoma de Células Escamosas/metabolismo , Ácidos Indolacéticos/farmacologia , Proteólise/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Neoplasias Cutâneas/metabolismo , Fatores de Transcrição/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Colesterol/metabolismo , Citoplasma/metabolismo , Células HEK293 , Humanos , Reguladores de Crescimento de Plantas/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas
6.
J Phys Chem B ; 122(22): 5727-5737, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29685028

RESUMO

Gprotein-coupled receptors (GPCRs) are seven transmembrane receptors that mediate a large number of cellular responses and are important drug targets. One of the current challenges in GPCR biology is to analyze the molecular signatures of receptor-lipid interactions and their subsequent effects on GPCR structure, organization, and function. Molecular dynamics simulation studies have been successful in predicting molecular determinants of receptor-lipid interactions. In particular, predicted cholesterol interaction sites appear to correspond well with experimentally determined binding sites and estimated time scales of association. In spite of several success stories, the methodologies in molecular dynamics simulations are still emerging. In this Feature Article, we provide a comprehensive overview of coarse-grain and atomistic molecular dynamics simulations of GPCR-lipid interaction in the context of experimental observations. In addition, we discuss the effect of secondary and tertiary structural constraints in coarse-grain simulations in the context of functional dynamics and structural plasticity of GPCRs. We envision that this comprehensive overview will help resolve differences in computational studies and provide a way forward.


Assuntos
Colesterol/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sítios de Ligação , Colesterol/química , Simulação de Dinâmica Molecular , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/química , Esfingolipídeos/química , Esfingolipídeos/metabolismo
7.
Adv Exp Med Biol ; 1112: 151-160, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30637696

RESUMO

The interaction of G protein-coupled receptors (GPCRs) with cholesterol is a hallmark of their function, organization, and structural dynamics. Several cholesterol interaction sites, such as the cholesterol recognition amino acid consensus (CRAC) and cholesterol consensus motif (CCM), have been mapped from crystallography, bioinformatics, and simulation studies. In this article, we characterize common descriptors for cholesterol interaction sites in the serotonin1A receptor from a series of coarse-grain simulations. We have identified a novel interaction mode for cholesterol in which the cholesterol polar headgroup interacts with aromatic amino acid residues, such as tryptophan and tyrosine. The cholesterol rings interact with both aromatic residues and nonpolar residues, thereby constituting a signature aromatic interaction site. In addition, we report a similar binding mode in the crystal structures of the serotonin2B receptor, suggesting that this binding mode could be a general feature of the serotonin receptor family. Interestingly, this signature aromatic interaction site is present along with one of the CRAC motifs in the serotonin1A receptor. Our results represent an important step toward mapping out the diversity of cholesterol-GPCR interaction sites.


Assuntos
Colesterol/química , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT2B de Serotonina/química , Motivos de Aminoácidos , Sítios de Ligação , Humanos , Ligação Proteica
8.
J Phys Chem B ; 121(9): 2111-2120, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28186760

RESUMO

The insertion and association of membrane proteins is critical in several cellular processes. These processes were thought to be protein-driven, but increasing evidence points toward an important role of the lipid bilayer. The lipid-mediated contribution has been shown to be important in the association of membrane peptides, but the corresponding "lipophobic" component has not been directly estimated. Here, we calculate the free energy of insertion for transmembrane peptides and estimate the lipophobic component from the cost of cavity formation. The free-energy calculations were performed using the coarse-grain Martini force field, which has been successful in predicting membrane protein interactions. As expected, the charged moieties have the least favorable free energy of insertion and the highest cost of cavity formation. A length dependence was observed in polyalanine peptides with the lipid-mediated component increasing nonlinearly with peptide length. Membrane fluidity was tested by varying the temperature, and opposing effects were observed for short and long peptides. The dependence of the lipid-mediated effects on peptide length and temperature was not uniform and gives valuable insight into the anisotropic nature of the membrane. The results are an important step in estimating membrane effects in protein insertion and association.


Assuntos
Bicamadas Lipídicas/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptídeos/química , Processos Estocásticos , Termodinâmica
9.
Sci Rep ; 6: 35015, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731329

RESUMO

Bovine α-lactalbumin (BLA) forms cytotoxic complexes with oleic acid (OA) that perturbs tumor cell membranes, but molecular determinants of these membrane-interactions remain poorly understood. Here, we aim to obtain molecular insights into the interaction of BLA/BLA-OA complex with model membranes. We characterized the folding state of BLA-OA complex using tryptophan fluorescence and resolved residue-specific interactions of BLA with OA using molecular dynamics simulation. We integrated membrane-binding data using a voltage-sensitive probe and molecular dynamics (MD) to demonstrate the preferential interaction of the BLA-OA complex with negatively charged membranes. We identified amino acid residues of BLA and BLA-OA complex as determinants of these membrane interactions using MD, functionally corroborated by uptake of the corresponding α-LA peptides across tumor cell membranes. The results suggest that the α-LA component of these cytotoxic complexes confers specificity for tumor cell membranes through protein interactions that are maintained even in the lipid complex, in the presence of OA.


Assuntos
Membrana Celular/metabolismo , Lactalbumina/metabolismo , Complexos Multiproteicos/química , Neoplasias/metabolismo , Ácido Oleico/metabolismo , Células A549 , Animais , Sítios de Ligação , Bovinos , Humanos , Lactalbumina/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Espectrometria de Fluorescência , Triptofano/química
10.
Sci Rep ; 6: 31858, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27535203

RESUMO

The organization and function of the serotonin1A receptor, an important member of the GPCR family, have been shown to be cholesterol-dependent, although the molecular mechanism is not clear. We performed a comprehensive structural and dynamic analysis of dimerization of the serotonin1A receptor by coarse-grain molecular dynamics simulations totaling 3.6 ms to explore the molecular details of its cholesterol-dependent association. A major finding is that the plasticity and flexibility of the receptor dimers increase with increased cholesterol concentration. In particular, a dimer interface formed by transmembrane helices I-I was found to be sensitive to cholesterol. The modulation of dimer interface appears to arise from a combination of direct cholesterol occupancy and indirect membrane effects. Interestingly, the presence of cholesterol at the dimer interface is correlated with increased dimer plasticity and flexibility. These results represent an important step in characterizing the molecular interactions in GPCR organization with potential relevance to therapeutic interventions.

11.
Biochim Biophys Acta ; 1858(11): 2818-2826, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27552916

RESUMO

Glycosphingolipids are minor yet essential components of eukaryotic cell membranes and are involved in a variety of cellular processes. Although glycosphingolipids such as GM1 have been previously reported to influence the function of G protein-coupled receptors (GPCRs), the molecular mechanism remains elusive. In this paper, we have explored the interaction of GM1 with the serotonin1A receptor, an important neurotransmitter receptor that belongs to the GPCR family. To examine the molecular basis of the interaction of GM1 with the serotonin1A receptor, we performed a series of coarse-grain molecular dynamics simulations of the receptor embedded in membrane bilayers containing GM1. Our results show that GM1 interacts with the serotonin1A receptor predominantly at the extracellular loop 1 and specifically at the sphingolipid binding domain (SBD). The SBD motif consists of a characteristic combination of aromatic, basic and turn-inducing residues, and is evolutionarily conserved in case of the serotonin1A receptor. The interaction of the SBD site with GM1 appears to stabilize a 'flip-out' conformation in which W102 of the extracellular loop 1 flips out from the central lumen of the receptor toward the membrane. The population of the 'flip-out' conformation is increased in the presence of cholesterol. Our data strongly suggest that a direct interaction between GM1 and the SBD site of the serotonin1A receptor may occur in vivo. In view of the reported role of GM1 and the serotonin1A receptor in neurodegenerative diseases, GM1-receptor interaction assumes significance in the context of malfunctioning of neuronal GPCRs under such conditions.


Assuntos
Gangliosídeo G(M1)/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Receptor 5-HT1A de Serotonina/química , Sítios de Ligação , Colesterol/química , Humanos , Fosfatidilcolinas/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
12.
Mol Membr Biol ; 32(4): 127-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26508556

RESUMO

The serotonin1A receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target in neuropsychiatric disorders. The receptor has been shown to require membrane cholesterol for its organization, dynamics and function. Although recent work suggests a close interaction of cholesterol with the receptor, the structural integrity of the serotonin1A receptor in the presence of cholesterol has not been explored. In this work, we have carried out all atom molecular dynamics simulations, totaling to 3 µs, to analyze the effect of cholesterol on the structure and dynamics of the serotonin1A receptor. Our results show that the presence of physiologically relevant concentration of membrane cholesterol alters conformational dynamics of the serotonin1A receptor and, on an average lowers conformational fluctuations. Our results show that, in general, transmembrane helix VII is most affected by the absence of membrane cholesterol. These results are in overall agreement with experimental data showing enhancement of GPCR stability in the presence of membrane cholesterol. Our results constitute a molecular level understanding of GPCR-cholesterol interaction, and represent an important step in our overall understanding of GPCR function in health and disease.


Assuntos
Membrana Celular/química , Colesterol/química , Simulação de Dinâmica Molecular , Receptor 5-HT1A de Serotonina/química , Sítios de Ligação , Membrana Celular/metabolismo , Colesterol/metabolismo , Lipídeos/química , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Receptor 5-HT1A de Serotonina/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
14.
Biophys J ; 106(6): 1290-300, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24655504

RESUMO

The ß2-adrenergic receptor is an important member of the G-protein-coupled receptor (GPCR) superfamily, whose stability and function are modulated by membrane cholesterol. The recent high-resolution crystal structure of the ß2-adrenergic receptor revealed the presence of possible cholesterol-binding sites in the receptor. However, the functional relevance of cholesterol binding to the receptor remains unexplored. We used MARTINI coarse-grained molecular-dynamics simulations to explore dimerization of the ß2-adrenergic receptor in lipid bilayers containing cholesterol. A novel (to our knowledge) aspect of our results is that receptor dimerization is modulated by membrane cholesterol. We show that cholesterol binds to transmembrane helix IV, and cholesterol occupancy at this site restricts its involvement at the dimer interface. With increasing cholesterol concentration, an increased presence of transmembrane helices I and II, but a reduced presence of transmembrane helix IV, is observed at the dimer interface. To our knowledge, this study is one of the first to explore the correlation between cholesterol occupancy and GPCR organization. Our results indicate that dimer plasticity is relevant not just as an organizational principle but also as a subtle regulatory principle for GPCR function. We believe these results constitute an important step toward designing better drugs for GPCR dimer targets.


Assuntos
Colesterol/metabolismo , Receptores Adrenérgicos beta 2/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Colesterol/química , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Receptores Adrenérgicos beta 2/metabolismo
15.
Phys Chem Chem Phys ; 15(43): 19031-41, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24096861

RESUMO

The association of transmembrane helices is an important event in several biological processes, but the factors governing association, especially the non-specific environmental effects, have still not been elucidated. Here, we use coarse-grain molecular dynamics simulations to study the association of ErbB2 transmembrane helices and three "oncogenic mutants." Self-assembly simulations and the dimerization free-energy profiles confirm an energetically-favorable dimerized state for both the wildtype and the mutants. The dissociation free energy of all three mutants is calculated to be larger than the wildtype peptide. Along with favourable protein-protein interactions, non-specific environmental effects are observed to contribute to the association. In particular, local bilayer thinning along with membrane perturbations are seen around the mutants. The membrane perturbations are reduced upon helix association, suggesting that lipid chain packing is an important driving force for helix dimerization. Our results highlight the importance of both specific as well as non-specific driving forces in the association of transmembrane helices.


Assuntos
Bicamadas Lipídicas/química , Receptor ErbB-2/química , Sequência de Aminoácidos , Animais , Dimerização , Humanos , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Ratos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...